Introduction to network anonymity and mixnets

Claudia Diaz

KU Leuven

Outline

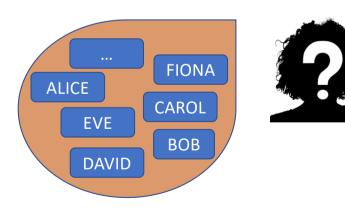
- Traffic analysis and network anonymity
- Mixes
- Mix networks, anonymous routing, dummy traffic
- Attacks on mixnets
- Take away points

What is Traffic Analysis

- Making use of (merely) the traffic data of a communication to extract information.
 - As opposed to 'interception' or 'cryptanalysis'.
- What are *traffic data* or *network metadata*?
 - Identities or call signs of communicating parties.
 - Time, duration or length of transmissions.
 - Location of emitter or receiver.
 - No content it may be encrypted.

"Just Metadata"

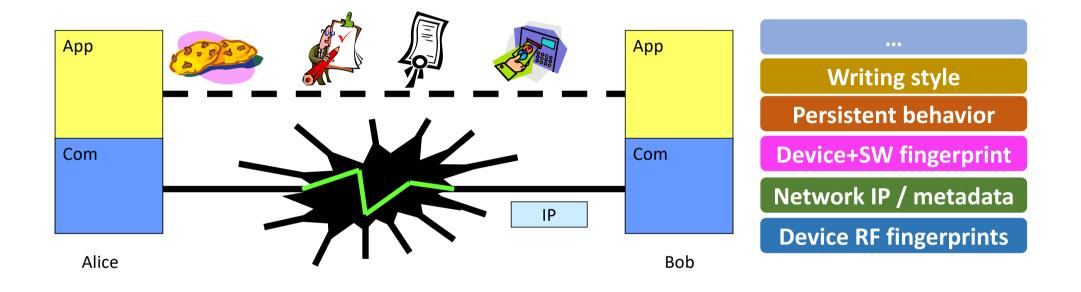
- Diffie & Landau 'Privacy on the line':
 - *"Traffic analysis, not cryptanalysis, is the backbone of communications intelligence."*
- NSA General Counsel Stewart Baker:
 - "Metadata absolutely tells you everything about somebody's life. If you have enough metadata, you don't really need content."
- General Michael Hayden, former director of the NSA and the CIA:
 - "We kill people based on metadata."


How easy is it to collect and exploit metadata?

- Exposed by default in core internet protocols:
 - TCP/IP, HTTP, UDP, FTP, TLS, DNS, ...
- Available to a large number of intermediaries
 - Local LAN or WiFi router
 - Internet Service Provider (ISP), Mobile network operator
 - BGP routers, Autonomous Systems, Internet Exchanges
 - Internet backbone cables
- Metadata has lower legal protection than data content
- Metadata is machine-readable, lower volume than content and much easier to interpret automatically than content
- Metadata is difficult and expensive to protect

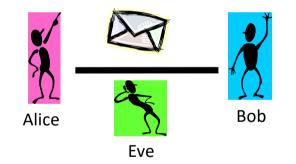
Anonymity

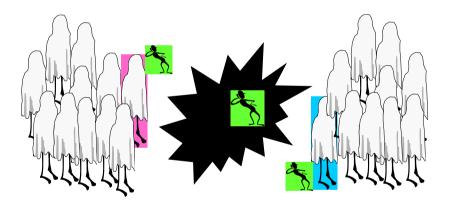
Anonymity definition (Pfitzmann and Hansen)


Anonymity is the state of being not identifiable within a set of subjects, the **anonymity set**

You CANNOT be anonymous on your own You need a crowd of other (diverse) people

You are MORE anonymous when:(1) The anonymity set contains more people(2) You do not stand out within that set 7

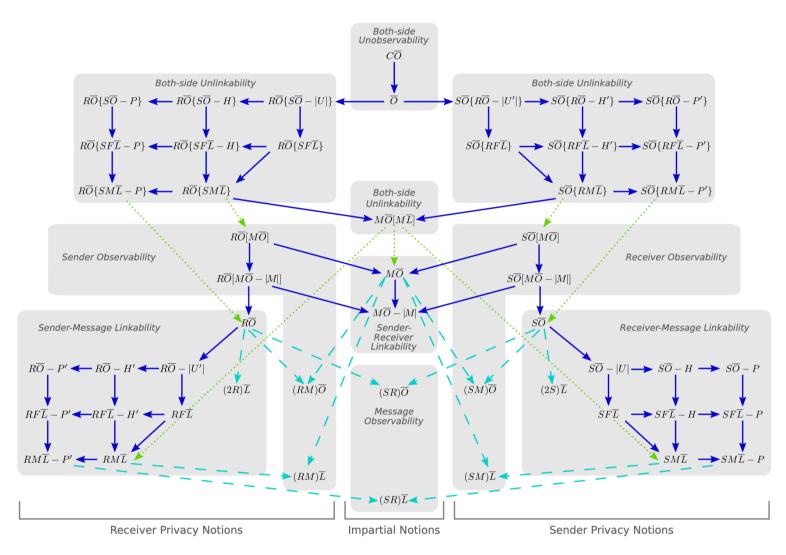

Note on Anonymity: Layers


Leakage that enables deanonymisation can occur at multiple layers !

Anonymous communication model

Classical secure communication model

Anonymous communication model



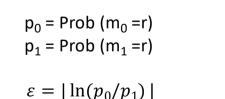
What would a "perfectly private" communication network offer?

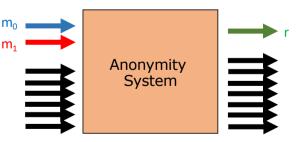
- The possibility for Alice to communicate while preventing adversaries from learning:
 - What she is saying
 - Who she is communicating with (sending or receiving messages)
 - When she is communicating
 - How long she is communicating
 - From where she is communicating
 - The amount of data she is sending or receiving
 - Any **patterns** in her communications
 - Whether she is communicating at all

Privacy properties at the network layer

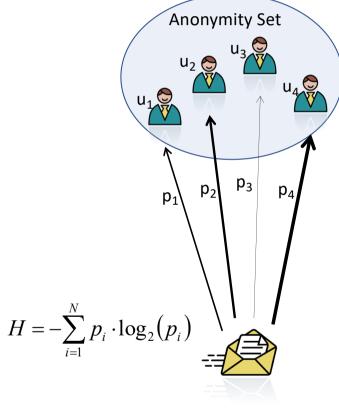
- Confidentiality of content
- Anonymity
 - Sender anonymity: receiver doesn't know who sent the message
 - Receiver anonymity: entity can be reached, or replied to, anonymously
 - Anonymity towards third parties: sender and receiver identify each other, but no other party can tell they are communicating with each other
- Unlinkability: impossible to determine that 2 (or more) messages, actions or pieces of data relate to the same user
- **Unobservability**: concealing the timing and volume of communications
- **Undetectability**: concealing participation in the network
- **Distribution of trust**: avoid central points of failure, resilience to partial compromise
- Forward security: limit the impact of participant compromise

C. Kuhn, M. Beck, S. Schiffner, E. Jorswieck, Thorsten Strufe. "On Privacy Notions in Anonymous Communication". PoPETs 2019


Powerful network adversaries

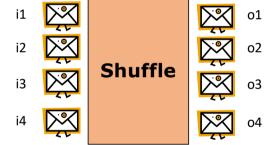

• Capabilities

- Can monitor all links in the network
- Can compromise entities in the network by injecting corrupt nodes (Sybil attack) or through coercion (importance of forward security and deniability)
- Active adversary: can read, inject, delete, modify messages
- Main objective: determine who communicates with whom
- Limitations: cannot break crypto primitives or see inside nodes it does not control
- Attack method: analysis of metadata


Anonymity metrics: evaluate adversarial success

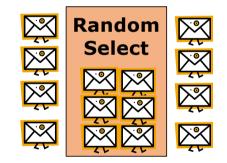
- Approaches:
 - Possibilistic metrics
 - Probabilistic / entropy metrics
 - Capture scalability
 - Indistinguishability / differential privacy metrics
 - Capture how close to perfect

Claudia Diaz - KU Leuven

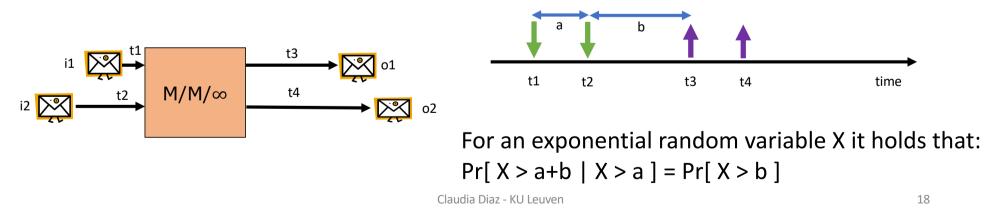


14

Mixes


Chaumian mix

- Mix: Proxy for anonymous email
- Goal: an adversary observing the input and output of the mix is not able to relate input messages to output messages
 - Bitwise unlinkability
 - The mix performs a crypto operation on input messages
 - Input/output of the mix cannot be correlated based on content or size
 - Prevent traffic analysis based on message I/O order and timing
 - Achieved by batching and shuffling messages
- Several mixes can be chained to distribute trust:
 - Sender \rightarrow Mix₁ : {Mix₂, {Rec, msg}_{KMix₂}}_{KMix₁}


Other mix designs based on batching

- Timed mixes:
 - Flush periodically, every T time units, regardless of how many messages have arrived
 - Optional flushing conditions: flush only if a minimum number of messages has been received
- Pool mixes (Mixmaster):
 - Flush only a subset of (randomly selected) messages and keep the rest for the next round, to be mixed with new arrivals
 - Long-tail anonymity sets
 - Increased variance of latency

Continuous-time mixes

- Stop-And-Go / Poisson mixes:
 - Delay each message individually with the amount of time drawn from an exponential distribution
 - Anonymity similar to a pool mix because of the memoryless property of exponential distributions
 - Delays picked by the sender: can predict delivery time

Mix networks and anonymous routing

Mix networks

- Distribute trust to avoid single points of failure:
 - Route messages through multiple mixes to provide anonymity even if some mixes are compromised
- Network topology?
 Who selects routes?
 Latency / Anonymity / Bandwidth tradeoffs?

Anonymous routing

Feature Name			Description	Instantiation and Symbols
Network Structure	Network topology		Degree of node connectivity in the network	\boxtimes (fully) \square (mostly) \square (partially)
	Connection type	Direction	Data flow in connections	\rightarrow (unidirectional) \leftrightarrow (bidirectional)
		Synchronization	Timing model for connection establishment and data sending	\neq (asynchronous) \cong (synchronous)
	Symmetry	Roles	Users operating as relays	•··•·• (peer-to-peer) •··• (client-server) •··•·• (hybrid)
		Topology	Node topology for routing	··· (flat) 💠 (hierarchical)
		Decentralization	Degree of decentralization for non-routing services	\odot (semi decentralized) \bigcirc (fully decentralized)
Routing Info	Network view		Network view necessary for making routing decisions	\bullet (complete) \bullet (partial)
	Updating		Triggers for routing information updates	⊕ (periodic) ∉ (event-based)
E	Routing type		Node selection per route	•··· (source-routed) ··•·· (hop-by-hop)
atio	Scheduling		Prioritization of traffic	\equiv (fair) \Leftrightarrow (prioritized)
munic	Node selection	Determinism	Determinism of node selection	✓ (deterministic) ¥ (non-deterministic)
Communication Model		Selection set	Permissible set of nodes per route	 Ø (all) ● (restricted, security) ⑦ (restricted, network) ② (user-based)
		Selection probability	Node selection probability per route	 ⊛ (uniform) ⊚ (weighted, static) ★ (weighted, dynamic)
ice, ility	Latency		Protocol latency	L (low-latency) H (high-latency) M (mid-latency)
Performance, Deployability	Communication mode		Longevity of connections	← (connection-based) 🖂 (message-based)
	Implementation		Implemented	✓ (yes) ¥ (no)
	Code availability		Open source	✓ (yes) ¥ (no)

How are mixnets similar/different from Tor?

- Similar
 - **Source routed** with nested encryption (though voting mixnets use cascades and rerandomizable crypto)
 - Packets traverse an **overlay network** with **multiple hops**
- Different:
 - Tor is connection-based vs Mixnets that are packet-based (routing info in each packet)
 - Tor does not add **latency** vs latency added in Mixnets
 - Vulnerable to end-to-end confirmation vs (possibly) vulnerable to long-term intersection attacks
 - Designed to resist local adversaries vs global adversaries
- Additionally (possible in both systems):
 - **Dummy traffic** strategies to strengthen anonymity and enable unobservability

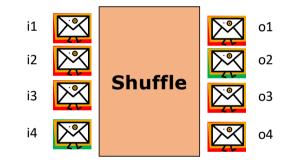
Sphinx packet format

- Compact and secure packet format for nested encryption
- Like Onion Routing, each mix in the path "peels off" a layer
- Unlike Onion Routing, there is no interactive circuit/session establishment with shared ephemeral keys
 - Keys must be derived from the packet itself: combination of group element and private key of the mix
- Per-hop bitwise unlinkability
- Tagging attack detection
- Replay attack detection

	Header		Payload
group element	encrypted routing information	integrity tag	encrypted payload
·	Claudia Diaz -	KU Leuven	

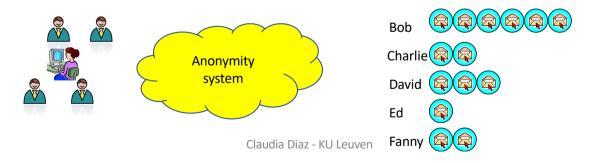
Single Use Reply Blocks (SURBs)

- Sphinx headers that route back to the original sender
 - Can only be used once \rightarrow prevent replay attacks
- Uses:
 - Indistinguishable replies
 - Reliable transport (ACKs)
 - Can function similarly to "onion addresses"
- Practical challenges
 - Limited validity (tradeoff with forward security)
 - Inefficient if downstream traffic much larger than upstream


Dummy traffic

- Fake messages introduced to confuse the attacker
- Indistinguishable from real traffic
- Increase anonymity and enable unobservability
- Dummy traffic design
 - Generated by users and/or by mixes?
 - Destination? (self, mix or other user)
 - Frequency of generation? Deterministic or random? Dependent or independent of real traffic?
 - Higher order correlations? (e.g., replies to simulate "conversations")
 - ...

Two attacks on mixnets


Blending (or "N-1") attacks

- Attack steps
 - 1. Empty the mix of legitimate messages
 - 2. Let the target message into the mix
 - 3. Fill the mix with attacker-generated messages, while preventing other legitimate messages from entering the mix
 - 4. At the output the adversary recognizes his own messages. The unknown message is the target
- Very simple attack for Chaumian mixes, more sophisticated variants also affect other types of mixes
- Attack is detectable with loops of dummy traffic

Long-term intersection attacks

- Assumptions:
 - Alice has persistent communication relationships (she communicates repeatedly with her friends)
 - There is a large population of senders and a different subset sends their messages with Alice's in each round
- Method:
 - Combine many observations (looking at who receives when Alice sends)
- Intuition:
 - If we observe rounds in which Alice sends, her likely recipients will appear frequently
- Result:
 - We can create a vector that expresses Alice's sending profile

Notes on long-term intersection attacks

- Hard to conceal persistent communications
 - Any practical anonymous communication channel will reveal long-term relationships
- The larger the ratio between user base and the mix threshold, the better the attack works
- Unobservability (dummy traffic) might help
 - BUT: expensive, and online/offline status may be hard to conceal
- Long-Term intersection Attacks take time:
 - Anonymity may be tactical
 - Evolution of user communication patterns over time

Take away points

- Anonymity needs to be protected at all layers: it is fragile
- You can't be anonymous on your own: a crowd to blend in is needed
- Anonymous routing requires taking many features and tradeoffs into consideration
- Dummy traffic is needed for unobservability
- Mixnets are an alternative to onion routing that
 - are packet-based and higher-latency
 - can provide stronger anonymity towards global network adversaries