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A little bit of context...



Why we need secure communication?



“An especially problematic excision of the political is the marginalization within 
the cryptographic community of the secure-messaging problem, an instance 

of which was the problem addressed by Chaum. Secure-messaging is the 
most fundamental privacy problem in cryptography: how can parties 

communicate in such a way that nobody knows who said what. More 
than a decade after the problem was introduced, Racko and Simon would 

comment on the near-absence of attention being paid to the it. Another 
20-plus years later, the situation is this: there is now a mountain of work on 

secure-messaging, but it's unclear what most of it actually does.“

-Rogaway, P. (2015), The Moral Character of Cryptographic Work, 
University of California, Davis, USA



● We need options that work
● We need full specifications
● We need properties, limitations and requirements
● We need protocols that update existing definitions: vague terms get 

better defined
● We need reviews and verifications
● We need ideas from different places
● We need implementations



What are ‘real-world’ conversations?
● People use the “digital world” for communication

On ‘casual real-world’ conversations, we know:

● who participates in it
● what is said 
● who is listening to it
● how long it lasts

Properties:

● You can deny having participated in it
● You can choose who listens to it
● You can choose how long it will last
● You know something of the identity of whom you communicate with



In the beginning...



Why OTR was created?

● Paper in 2004 by Ian Goldberg, Nikita Borisov and Eric Brewer
● Conversations in the "digital" world should mimic casual real world 

conversations
● PGP: protect communications. Sign messages and encrypt them.
● Problems: there is a record, there is a ‘proof’ of authorship

 

https://xkcd.com/1553/

 



Let’s start with properties



● Forward secrecy:
 - Usage of unique keys for the encryption of each message

 - “The idea of perfect forward secrecy (sometimes called break-backward 
protection) is that previous traffic is locked securely in the past.” 
(Menezes, A., Oorschot, P., Vanstone, S. (1997), Handbook of Applied 
Cryptography, CRC Pres.)
 - “A classical adversary that compromises the long-term secret keys of 
both parties cannot retroactively compromise past session keys” (Bellare, 
M., Pointcheval, D., & Rogaway, P. (2000). Authenticated Key Exchange 
Secure Against Dictionary Attacks. In Advances in Cryptology–EUROCRYPT)



● Usage of Diffie-Hellman key exchange:
○ Generate a, perform DH exchange
○ Use the shared secret K ((g^b)^a) to generate MK
○ Encrypt messages with MK
○ Forget a after key exchange; forget MK after session

● But there are problems with this...



●  Post-compromise security (sometimes referred as backward secrecy):
  - Even if a message key gets compromised, no future messages can be 
decrypted
  - “A protocol between Alice and Bob provides Post-Compromise Security 
(PCS) if Alice has a security guarantee about communication with Bob, 
even if Bob’s secrets have already been compromised” (Cohn-Gordon, K., 
Cremers, C., & Garrat, L. (2016). On Post-Compromise Security. Department 
of Computer Science, University of Oxford)



Double Ratchet Algorithm
● Happens after an AKE

Alice:
● Has a shared secret K
● Bob’s public key: bob_dh_pub_0

Bob:
● Has a shared secret K

● Bob’s private key: bob_dh_priv_0
● Generates: 

○ alice_dh_priv_0, alice_dh_pub_0 = generateDH()
● Calculates: 

○ shared_secret_1 = DH(alice_dh_priv_0, bob_dh_pub_0)



Alice:
● Derives:

○ RK_0, CKs_0 = KDF(K, shared_secret_1)
● Wants to send message 1 “Hello”
● Derives

○ CKs_1, MK_0 = KDF(CKs_0)
● Encrypts: 

○ c_1 = ENC(MK_0, “Hello”)
● Sends: c_1 || alice_dh_pub_0

Bob:
● Calculates:

○ shared_secret_1 = (bob_dh_priv_0, alice_dh_pub_0)
● Derives:

○ RK_0, CKr_0 = KDF(K, shared_secret_1)
● Derives

○ CKr_1, MK_0 = KDF(CKr_0)
● Decrypts 

○ “Hello” = DEC(MK_0, c_1)



● If, at that point, Bob wants to send messages, he:

● Generates: 
○ bob_dh_priv_1, bob_dh_pub_1 = generateDH()

● Calculates: 
○ shared_secret_1 = DH(bob_dh_priv_1, alice_dh_pub_1)



● Double-ratchet algorithm: “Ping-pong” mechanism
● Post-compromise in the sense of giving a timeframe (aka 

channel healing)
● Alwen, Coretti and Dodis: Immediate Decryption and 

Message-loss Resilience 



Deniability

● Types: online, offline, message, participation
“We can distinguish between message repudiation, in which Alice denies 
sending a specific message, and participation repudiation in which Alice 
denies communicating with Bob at all.”
- Unger, N., Dechand, S., Bonneau, J., Fahl, S., Perl, H., Goldberg, I., Smith, 
M. (2015), SoK: Secure Messaging, 2015 IEEE Symposium on Security and 
Privacy



“A protocol is strongly deniable if transcripts provide no evidence even if 
long-term key material is compromised (offline deniability) and no outsider 

can obtain evidence even if an insider interactively colludes with them 
(online deniability).”

- Unger, N. & Goldberg, I. (2015), Improved Strongly Deniable Authenticated 
Key Exchanges for Secure Messaging, University of Waterloo, Waterloo, 

Canada.



Offline and Online Deniability

● Offline Deniability: anyone can forge a transcript using the long-term 
public keys

○ Achieved by using MAC keys derived from a shared secret and revealing them
○ Achieved by using a DAKE

● Online Deniability: Participants in a OTRv4 exchange cannot provide proof 
of participation to third parties without making themselves vulnerable to 
KCI attacks.

○ Achieved by using a DAKE, that uses ring signatures



● Usage of MAC. Every MAC key is “revealed” after been used.
● Usage of DAKEs: usage of ring signatures

● “Ring signatures are similar to ordinary digital signatures, except that 
messages are signed by a set of potential signers called a ring. Anyone 
with knowledge of a private key corresponding to any public key in this 
ring can produce the ring signature, and it is not possible to determine 
which key was used”.

- Unger, N. & Goldberg, I. (2015), Improved Strongly Deniable Authenticated 
Key Exchanges for Secure Messaging, University of Waterloo, Waterloo, 

Canada.



● Lachlan J. Gunn, Ricardo Vieitez Parra, and N. Asokan: “Circumventing 
Cryptographic Deniability with Remote Attestation”

● “Deniability depends upon the ability of an adversary to lie: cryptographic 
deniability means nothing if a verifier can trust your communications 
partner to truthfully reveal what you said. Remote attestation allows even 
manifestly untrustworthy actors such as criminal organizations or hostile 
intelligence agencies to reach such a level of trustworthiness by 
piggybacking on a verifier’s trust in a hardware vendor; such an adversary 
can compromise your partner’s device, and use attestation to prove to a 
skeptical audience that the messages you sent to that device were not 
fabricated”



Verification

● Fingerprint verification: key change?
● Socialist Millionaires Protocol: use a shared secret.

○ Alice and Bob learn whether they share the same secret or not
○ They learn nothing else



The state of the art





● Signal, Wire, Riot, OMEMO, Whatsapp
● MLS

● People moving on from: desktop clients, XMPP
● Too many apps to install
● No clear privacy and security properties given
● No good synchronization between devices
● No mapping of security/privacy properties into the UI
● Deniability in the UI?



Version 4



Why a version 4 of OTR?

● We want deniability: participation, message, online and offline
● We want forward secrecy and post-compromise secrecy
● We want a higher security level
● We want to update the cryptographic primitives
● We want additional protection against transcript decryption in the case of 

ECC compromise
● We want elliptic curves



New communication model

● We want in-order and out-of-order delivery of messages
● We want online and offline conversations
● We want different modes in which something can be implemented
● We don’t want to trust servers

● Do we need new versions?



Limitations and current issues



● Metadata protection
● Post-quantum algorithms
● Group chat support

Things to discuss:

● What about the synchronization and multi-device problem?
● Should messages disappear / no history? 
● Impact of ‘top’ properties on the underlying protocol
● Can there be modes for deniability?
● Do we need new protocols or to update the existing ones?
● Do we need more apps?



Implementation problems



● Which language do we choose?
● Which library we choose?
● How do we correctly store/delete/change keys?
● How do we manage keys?
● Too many languages: problems with cryptographic libraries
● Should serves be trusted?
● Is the code audited? Is the protocol verified?
● How do the UI will look like?



Thanks to everyone involved
To the main collaborators (people in the current team or with more than 6000 
lines of code/text contributed):
- Ian Goldberg
- Nik Unger
- Mike Hamburg
- Sofia Celi
- Reinaldo de Souza Jr
- Rosalie Tolentino
- Jurre van Bergen
- Iván Pazmiño
- Giovane Liberato
- Fan Jiang
- Mauro Velasco
- Pedro Palau
- Cristina Salcedo
- Others who have collaborated



Check out our repos!

The protocols: 

https://github.com/otrv4/otrv4

https://github.com/otrv4/otrv4-prekey-server

The library:

https://github.com/otrv4/libotr-ng

The plugin: 

https://github.com/otrv4/pidgin-otrng



The prekey server:

https://github.com/otrv4/otrng-prekey-server

https://github.com/otrv4/prekey-server-xmpp

The toolkit:

https://github.com/otrv4/libotr-ng-toolkit



Golang

https://github.com/otrv4/otr4

Java by Danny van Heumen

https://gitlab.com/cobratbq/otr4j

OTR.im

●  Happy to host you and setup CI/CD
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Questions?

● Come us find us online, as well! (https://otr.im/)
● IRC: #otr at OFTC
● We have an assembly!



Thanks!
Sofía Celi
@claucece

@otr_im



You have unlocked the secret slides*

*Copyright to Nik Unger



Difference with Signal

● OTRv4 has better deniability properties and perfect forward secrecy
● OTRv4 has a well defined specification
● OTRv4 has different verification mechanisms
● OTRv4 supports different networks and is not centralized
● OTRv4 supports other features, such as symmetric keys



Difference with OMEMO

● OTRv4 is agnostic: can work over any protocol, even asynchronous
● OTRv4 has better deniability properties
● OTRv4 has a well defined specification
● OMEMO supports transcript synchronizing between devices



Difference with MLS

● OTRv4 is not for groups; MLS is
● OTRv4 has better deniability properties for a one-to-one conversation



Why deniability matters

● It is a right in casual real-world conversations, even if you don’t think 
about it

● It is useful not only to you but to whom you are talking to
● It is resistance
● We shouldn’t make the situation worse than plaintext, by adding 

irrefutable proof of conversations



What is weak forward secrecy?

● Strong forward secrecy: protects the session key when at least one party 
completes the DAKE exchange

● Weak forward secrecy: protects the session key only when both parties 
complete the DAKE exchange



The DAKEs

DAKEZ -Unger, N. & Goldberg, I. (2015), Improved Strongly Deniable 
Authenticated Key Exchanges for Secure Messaging, University of 

Waterloo, Waterloo, Canada



XZDH -Unger, N. & Goldberg, I. (2015), Improved Strongly Deniable 
Authenticated Key Exchanges for Secure Messaging, University of 

Waterloo, Waterloo, Canada




