
The devil is in the detail:
designing and implementing the

4th version of the
Off-the-Record messaging protocol

Sofía Celi

A little bit of context...

Why we need secure communication?

“An especially problematic excision of the political is the marginalization within
the cryptographic community of the secure-messaging problem, an instance

of which was the problem addressed by Chaum. Secure-messaging is the
most fundamental privacy problem in cryptography: how can parties

communicate in such a way that nobody knows who said what. More
than a decade after the problem was introduced, Racko and Simon would

comment on the near-absence of attention being paid to the it. Another
20-plus years later, the situation is this: there is now a mountain of work on

secure-messaging, but it's unclear what most of it actually does.“

-Rogaway, P. (2015), The Moral Character of Cryptographic Work,
University of California, Davis, USA

● We need options that work
● We need full specifications
● We need properties, limitations and requirements
● We need protocols that update existing definitions: vague terms get

better defined
● We need reviews and verifications
● We need ideas from different places
● We need implementations

What are ‘real-world’ conversations?
● People use the “digital world” for communication

On ‘casual real-world’ conversations, we know:

● who participates in it
● what is said
● who is listening to it
● how long it lasts

Properties:

● You can deny having participated in it
● You can choose who listens to it
● You can choose how long it will last
● You know something of the identity of whom you communicate with

In the beginning...

Why OTR was created?

● Paper in 2004 by Ian Goldberg, Nikita Borisov and Eric Brewer
● Conversations in the "digital" world should mimic casual real world

conversations
● PGP: protect communications. Sign messages and encrypt them.
● Problems: there is a record, there is a ‘proof’ of authorship

https://xkcd.com/1553/

Let’s start with properties

● Forward secrecy:
 - Usage of unique keys for the encryption of each message

 - “The idea of perfect forward secrecy (sometimes called break-backward
protection) is that previous traffic is locked securely in the past.”
(Menezes, A., Oorschot, P., Vanstone, S. (1997), Handbook of Applied
Cryptography, CRC Pres.)
 - “A classical adversary that compromises the long-term secret keys of
both parties cannot retroactively compromise past session keys” (Bellare,
M., Pointcheval, D., & Rogaway, P. (2000). Authenticated Key Exchange
Secure Against Dictionary Attacks. In Advances in Cryptology–EUROCRYPT)

● Usage of Diffie-Hellman key exchange:
○ Generate a, perform DH exchange
○ Use the shared secret K ((g^b)^a) to generate MK
○ Encrypt messages with MK
○ Forget a after key exchange; forget MK after session

● But there are problems with this...

● Post-compromise security (sometimes referred as backward secrecy):
 - Even if a message key gets compromised, no future messages can be
decrypted
 - “A protocol between Alice and Bob provides Post-Compromise Security
(PCS) if Alice has a security guarantee about communication with Bob,
even if Bob’s secrets have already been compromised” (Cohn-Gordon, K.,
Cremers, C., & Garrat, L. (2016). On Post-Compromise Security. Department
of Computer Science, University of Oxford)

Double Ratchet Algorithm
● Happens after an AKE

Alice:
● Has a shared secret K
● Bob’s public key: bob_dh_pub_0

Bob:
● Has a shared secret K

● Bob’s private key: bob_dh_priv_0
● Generates:

○ alice_dh_priv_0, alice_dh_pub_0 = generateDH()
● Calculates:

○ shared_secret_1 = DH(alice_dh_priv_0, bob_dh_pub_0)

Alice:
● Derives:

○ RK_0, CKs_0 = KDF(K, shared_secret_1)
● Wants to send message 1 “Hello”
● Derives

○ CKs_1, MK_0 = KDF(CKs_0)
● Encrypts:

○ c_1 = ENC(MK_0, “Hello”)
● Sends: c_1 || alice_dh_pub_0

Bob:
● Calculates:

○ shared_secret_1 = (bob_dh_priv_0, alice_dh_pub_0)
● Derives:

○ RK_0, CKr_0 = KDF(K, shared_secret_1)
● Derives

○ CKr_1, MK_0 = KDF(CKr_0)
● Decrypts

○ “Hello” = DEC(MK_0, c_1)

● If, at that point, Bob wants to send messages, he:

● Generates:
○ bob_dh_priv_1, bob_dh_pub_1 = generateDH()

● Calculates:
○ shared_secret_1 = DH(bob_dh_priv_1, alice_dh_pub_1)

● Double-ratchet algorithm: “Ping-pong” mechanism
● Post-compromise in the sense of giving a timeframe (aka

channel healing)
● Alwen, Coretti and Dodis: Immediate Decryption and

Message-loss Resilience

Deniability

● Types: online, offline, message, participation
“We can distinguish between message repudiation, in which Alice denies
sending a specific message, and participation repudiation in which Alice
denies communicating with Bob at all.”
- Unger, N., Dechand, S., Bonneau, J., Fahl, S., Perl, H., Goldberg, I., Smith,
M. (2015), SoK: Secure Messaging, 2015 IEEE Symposium on Security and
Privacy

“A protocol is strongly deniable if transcripts provide no evidence even if
long-term key material is compromised (offline deniability) and no outsider

can obtain evidence even if an insider interactively colludes with them
(online deniability).”

- Unger, N. & Goldberg, I. (2015), Improved Strongly Deniable Authenticated
Key Exchanges for Secure Messaging, University of Waterloo, Waterloo,

Canada.

Offline and Online Deniability

● Offline Deniability: anyone can forge a transcript using the long-term
public keys

○ Achieved by using MAC keys derived from a shared secret and revealing them
○ Achieved by using a DAKE

● Online Deniability: Participants in a OTRv4 exchange cannot provide proof
of participation to third parties without making themselves vulnerable to
KCI attacks.

○ Achieved by using a DAKE, that uses ring signatures

● Usage of MAC. Every MAC key is “revealed” after been used.
● Usage of DAKEs: usage of ring signatures

● “Ring signatures are similar to ordinary digital signatures, except that
messages are signed by a set of potential signers called a ring. Anyone
with knowledge of a private key corresponding to any public key in this
ring can produce the ring signature, and it is not possible to determine
which key was used”.

- Unger, N. & Goldberg, I. (2015), Improved Strongly Deniable Authenticated
Key Exchanges for Secure Messaging, University of Waterloo, Waterloo,

Canada.

● Lachlan J. Gunn, Ricardo Vieitez Parra, and N. Asokan: “Circumventing
Cryptographic Deniability with Remote Attestation”

● “Deniability depends upon the ability of an adversary to lie: cryptographic
deniability means nothing if a verifier can trust your communications
partner to truthfully reveal what you said. Remote attestation allows even
manifestly untrustworthy actors such as criminal organizations or hostile
intelligence agencies to reach such a level of trustworthiness by
piggybacking on a verifier’s trust in a hardware vendor; such an adversary
can compromise your partner’s device, and use attestation to prove to a
skeptical audience that the messages you sent to that device were not
fabricated”

Verification

● Fingerprint verification: key change?
● Socialist Millionaires Protocol: use a shared secret.

○ Alice and Bob learn whether they share the same secret or not
○ They learn nothing else

The state of the art

● Signal, Wire, Riot, OMEMO, Whatsapp
● MLS

● People moving on from: desktop clients, XMPP
● Too many apps to install
● No clear privacy and security properties given
● No good synchronization between devices
● No mapping of security/privacy properties into the UI
● Deniability in the UI?

Version 4

Why a version 4 of OTR?

● We want deniability: participation, message, online and offline
● We want forward secrecy and post-compromise secrecy
● We want a higher security level
● We want to update the cryptographic primitives
● We want additional protection against transcript decryption in the case of

ECC compromise
● We want elliptic curves

New communication model

● We want in-order and out-of-order delivery of messages
● We want online and offline conversations
● We want different modes in which something can be implemented
● We don’t want to trust servers

● Do we need new versions?

Limitations and current issues

● Metadata protection
● Post-quantum algorithms
● Group chat support

Things to discuss:

● What about the synchronization and multi-device problem?
● Should messages disappear / no history?
● Impact of ‘top’ properties on the underlying protocol
● Can there be modes for deniability?
● Do we need new protocols or to update the existing ones?
● Do we need more apps?

Implementation problems

● Which language do we choose?
● Which library we choose?
● How do we correctly store/delete/change keys?
● How do we manage keys?
● Too many languages: problems with cryptographic libraries
● Should serves be trusted?
● Is the code audited? Is the protocol verified?
● How do the UI will look like?

Thanks to everyone involved
To the main collaborators (people in the current team or with more than 6000
lines of code/text contributed):
- Ian Goldberg
- Nik Unger
- Mike Hamburg
- Sofia Celi
- Reinaldo de Souza Jr
- Rosalie Tolentino
- Jurre van Bergen
- Iván Pazmiño
- Giovane Liberato
- Fan Jiang
- Mauro Velasco
- Pedro Palau
- Cristina Salcedo
- Others who have collaborated

Check out our repos!

The protocols:

https://github.com/otrv4/otrv4

https://github.com/otrv4/otrv4-prekey-server

The library:

https://github.com/otrv4/libotr-ng

The plugin:

https://github.com/otrv4/pidgin-otrng

The prekey server:

https://github.com/otrv4/otrng-prekey-server

https://github.com/otrv4/prekey-server-xmpp

The toolkit:

https://github.com/otrv4/libotr-ng-toolkit

Golang

https://github.com/otrv4/otr4

Java by Danny van Heumen

https://gitlab.com/cobratbq/otr4j

OTR.im

● Happy to host you and setup CI/CD

Time for references

1. Goldberg, I. and Unger, N. (2016). Improved Strongly Deniable
Authenticated Key Exchanges for Secure Messaging, Waterloo, Canada:
University of Waterloo. Available at:
http://cacr.uwaterloo.ca/techreports/2016/cacr2016-06.pdf

2. Hamburg, M. (2015). Ed448-Goldilocks, a new elliptic curve, NIST ECC
workshop. Available at: https://eprint.iacr.org/2015/625.pdf

3. Gunn, L. J., Vieitez Parra, R. and Asokan, N. (2018) On The Use of Remote
Attestation to Break and Repair Deniability. Available at:
https://eprint.iacr.org/2018/424.pdf

http://cacr.uwaterloo.ca/techreports/2016/cacr2016-06.pdf
https://eprint.iacr.org/2015/625.pdf
https://eprint.iacr.org/2018/424.pdf

4. Rogaway, P. (2015), The Moral Character of Cryptographic Work, University of
California, Davis, USA

5. Menezes, A., Oorschot, P., Vanstone, S. (1997), Handbook of Applied
Cryptography, CRC Pres.)

6. Bellare, M., Pointcheval, D., & Rogaway, P. (2000). Authenticated Key Exchange
Secure Against Dictionary Attacks. In Advances in Cryptology–EUROCRYPT

7. Cohn-Gordon, K., Cremers, C., & Garrat, L. (2016). On Post-Compromise
Security. Department of Computer Science, University of Oxford

8. Unger, N., Dechand, S., Bonneau, J., Fahl, S., Perl, H., Goldberg, I., Smith, M.
(2015), SoK: Secure Messaging, 2015 IEEE Symposium on Security and Privacy

Questions?

● Come us find us online, as well! (https://otr.im/)
● IRC: #otr at OFTC
● We have an assembly!

Thanks!
Sofía Celi
@claucece

@otr_im

You have unlocked the secret slides*

*Copyright to Nik Unger

Difference with Signal

● OTRv4 has better deniability properties and perfect forward secrecy
● OTRv4 has a well defined specification
● OTRv4 has different verification mechanisms
● OTRv4 supports different networks and is not centralized
● OTRv4 supports other features, such as symmetric keys

Difference with OMEMO

● OTRv4 is agnostic: can work over any protocol, even asynchronous
● OTRv4 has better deniability properties
● OTRv4 has a well defined specification
● OMEMO supports transcript synchronizing between devices

Difference with MLS

● OTRv4 is not for groups; MLS is
● OTRv4 has better deniability properties for a one-to-one conversation

Why deniability matters

● It is a right in casual real-world conversations, even if you don’t think
about it

● It is useful not only to you but to whom you are talking to
● It is resistance
● We shouldn’t make the situation worse than plaintext, by adding

irrefutable proof of conversations

What is weak forward secrecy?

● Strong forward secrecy: protects the session key when at least one party
completes the DAKE exchange

● Weak forward secrecy: protects the session key only when both parties
complete the DAKE exchange

The DAKEs

DAKEZ -Unger, N. & Goldberg, I. (2015), Improved Strongly Deniable
Authenticated Key Exchanges for Secure Messaging, University of

Waterloo, Waterloo, Canada

XZDH -Unger, N. & Goldberg, I. (2015), Improved Strongly Deniable
Authenticated Key Exchanges for Secure Messaging, University of

Waterloo, Waterloo, Canada

